24 research outputs found

    Machine learned-based visualization of the diversity of grapevine genomes worldwide and in Armenia using SOMmelier

    Get PDF
    In the proposed study three major issues have been addressed: Firstly, the diversity of grapevine accessions worldwide and particularly in Armenia, a small country located in the largely volcanic Armenian Highlands, is incredibly rich in cultivated and especially wild grapes; secondly, the information hidden in their (whole) genomes, e.g., about the domestication history of grapevine over the last 11,000 years and phenotypic traits such as cultivar utilization and a putative resistance against powdery mildew, and, thirdly machine learning methods to extract and to visualize this information in an easy to percept way. We shortly describe the Self Origanizing Maps (SOM) portrayal method called “SOMmelier” (as the vine-genome “waiter”) and illustrate its power by applying it to whole genome data of hundreds of grapevine accessions. We also give a short outlook on possible future directions of machine learning in grapevine transcriptomics and ampelogaphy

    Addition of thrombin reduces the recovery of extracellular vesicles from blood plasma

    No full text
    Extracellular vesicles (EVs) are widely studied as a system of intercellular communication, as markers of various diseases, as well as a vehicle for delivery of various bioactive molecules to various cells. Investigation of EVs’ structure and function requires their isolation and precise quantification. However, in the current literature, there are significant discrepancies in the estimated numbers of EVs in different body fluids. In part, this discrepancy is due to the difference in EVs isolation protocols used by different investigators. A common protocol that includes ExoQuick ™ is often used to isolate EVs from body fluids and culture medium. Here, we show that in the case of isolation of EVs from blood, thrombin should be omitted from the protocol as clots formed due to the thrombin-triggered coagulation may entrap many EVs thus leading to the underestimation of their numbers

    Flow analysis of individual blood extracellular vesicles in acute coronary syndrome

    No full text
    A diverse population of small extracellular vesicles (EVs) that are released by various cells has been characterized predominantly in bulk, a procedure whereby the individual characteristics of EVs are lost. Here, we used a new nanotechnology-based flow cytometric analysis to characterize the antigenic composition of individual EVs in patients with acute coronary syndrome (ACS). Plasma EVs were captured with 15-nm magnetic nanoparticles coupled to antibodies against CD31 (predominantly an endothelial marker), CD41a (a marker for platelets), and CD63 or MHC class I (common EV markers). The total amounts of EVs were higher in the ACS patients than in the controls, predominantly due to the contribution of patients with acute myocardial infarction. For all captured fractions, the differences in the EV amounts were restricted to CD41a+ EVs. The increase in the numbers of EVs in the ACS patients, predominantly of platelet origin, probably reflects platelet activation and may indicate disease progression

    HIV-1 expressing the envelopes of transmitted/founder or control/reference viruses have similar infection patterns of CD4 T-cells in human cervical tissue ex vivo.

    Get PDF
    Recently, it was found that 80% of sexual HIV-1 transmissions are established by a single virion/viral genome. To investigate whether the transmitted/founder (T/F) viruses have specific biological properties favoring sexual transmission, we inoculated human cervical tissue explants with isogenic HIV-1 viruses encoding Env sequences from T/F and control reference (C/R) HIV-1 variants as well as with full length T/F HIV-1 and compared their replication efficiencies, T cell depletion, and the activation status of infected cells. We found that all the HIV-1 variants were capable of transmitting infection to cervical tissue ex vivo and in this system preferentially replicate in activated CD4 T cells and deplete these cells. There was no difference in the biological properties of T/F and C/R HIV-1 variants as evaluated in ex vivo cervical tissue
    corecore